An Improved Approximation Algorithm for Maximum Edge 2-Coloring in Simple Graphs

نویسندگان

  • Zhi-Zhong Chen
  • Ruka Tanahashi
چکیده

We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of 468 575 . This improves on the previous best (trivial) ratio of 45 .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Edge-coloring Vertex-weightings of Graphs

Let $G=(V(G),E(G))$ be a simple, finite and undirected graph of order $n$. A $k$-vertex weightings of a graph $G$ is a mapping $w: V(G) to {1, ldots, k}$. A $k$-vertex weighting induces an edge labeling $f_w: E(G) to N$ such that $f_w(uv)=w(u)+w(v)$. Such a labeling is called an {it edge-coloring k-vertex weightings} if $f_{w}(e)not= f_{w}(echr(chr(chr('39')39chr('39'))39chr(chr('39')39chr('39'...

متن کامل

Approximating Maximum Edge 2-Coloring in Simple Graphs

We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of roughly 0.842 and runs in O(nm) time, where n (respectively, m) is the number of vertices (respectively, edges) in the input graph. The previously best ratio achieved by a polynomial-time approximation algorithm was 5...

متن کامل

Approximating Maximum Edge 2-Coloring in Simple Graphs Via Local Improvement

We present a polynomial-time approximation algorithm for legally coloring as many edges of a given simple graph as possible using two colors. It achieves an approximation ratio of 24 29 ≈ 0.828. This improves on the previous best ratio of 468 575 ≈ 0.814.

متن کامل

On the Edge-Difference and Edge-Sum Chromatic Sum of the Simple Graphs

‎For a coloring $c$ of a graph $G$‎, ‎the edge-difference coloring sum and edge-sum coloring sum with respect to the coloring $c$ are respectively‎ ‎$sum_c D(G)=sum |c(a)-c(b)|$ and $sum_s S(G)=sum (c(a)+c(b))$‎, ‎where the summations are taken over all edges $abin E(G)$‎. ‎The edge-difference chromatic sum‎, ‎denoted by $sum D(G)$‎, ‎and the edge-sum chromatic sum‎, ‎denoted by $sum S(G)$‎, ‎a...

متن کامل

Coloring Graph Powers: Graph Product Bounds and Hardness of Approximation

We consider the question of computing the strong edge coloring, square graph coloring, and their generalization to coloring the k power of graphs. These problems have long been studied in discrete mathematics, and their “chaotic” behavior makes them interesting from an approximation algorithm perspective: For k = 1, it is well-known that vertex coloring is “hard” and edge coloring is “easy” in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • J. Discrete Algorithms

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007